Department of Mathematics

Fall 2016

GRADUATE COURSE FALL 2016

SENIOR UNDERGRADUATE COURSES

Course	Section	Course Title	Course Day \& Time	Rm \#	Instructor
Math 431020821	Biostatistics	MWF, 11:00am-Noon	CBB 104	C. Peters	
Math 432015799	Intro to Stochastic Processes	TuTh, 11:30am-1pm	GAR 118	W. Ott	
Math 433120822	Introduction to Real Analysis I	TuTh, 10-11:30am	F154	D. Labate	
Math 435029195	Differential Geometry	MW, 1-2:30pm	C 106	M. Ru	
Math 436422454	Introduction to Numerical Analysis in Scientific Computing	MW, 4-5:30pm	SEC 202	T-W Pan	
Math 436628114	Numerical Linear Algebra	TuTh, 11:30am-1pm	SEC 202	J. He	
Math 437720824	Advanced Linear Algebra I	MWF, 10-11am	F154	A. Mamonov	
Math 437720825	Advanced Linear Algebra I	TuTh, 1-2:30pm	CBB 120 A. Török		
Math TBD	TBD	TBD	TBD	TBD	TBD
Math 438818577	History of Mathematics	(online)	(online)	S. Ji	
Math 438917365	Survey of Undergraduate MathematicsMWF, 9-10am	AH 104	M. Almus		

GRADUATE ONLINE COURSES

Course	Section Course Title	Course Day \& Time	Instructor
Math 533117818	Linear Algebra with Applications	Arrange (online course)K. Kaiser	
Math 533319131	Analysis	Arrange (online course)	G. Etgen
Math 535027317	Intro. to Differential Geometry	Arrange (online course) M. Ru	
Math 538516710	Statistics	Arrange (online course)C. Peters	
Math 533429194	Complex Analysis	Arrange (online course)	S. Ji
Math 539727319	Numerical Computing with Python Arrange (online course) J. Morgan		

GRADUATE COURSES

Course	SectionCourse Title	Course Day \& Time	Rm \#	Instructor
Math 630215811	Modern Algebra I	MWF, 10-11am	AH 204	M. Tomforde
Math 630820826	Advanced Linear Algebra I	MWF, 10-11am	F 154	A. Mamonov
Math 630820827	Advanced Linear Algebra I	TuTh, 1-2:30pm	CBB 120A. Török	
Math 631220823	Introduction to Real Analysis	TuTh, 10-11:30am	F 154	D. Labate
Math 632015840	Theory of Functions of a Real Variable	MWF, 11am-Noon	C 113	M. Kalantar
Math 632427314	Differential Equations	TuTh, 10-11:30am	AH 301	A. Török

Math 634215841	Topology	MWF, Noon-1pm	AH 2	D. Blecher
Math 635227315	Complex Analysis and Geometry	MW, 1-2:30pm	C 109	G. Heier
Math 636016690	Applicable Analysis	TuTh, 4-5:30pm	AH 301	G. Auchmuty
Math 636615842	Optimization Theory	TuTh, 11:30am-1pm	AH 12	R. Glowinski
Math 637015843	Numerical Analysis	MW, 1-2:30pm	SW 219	Y. Kuznetsov
Math 638215844	Probability and Statistics	MW, 1-2:30pm	AH 301	W. Fu
Math 638415845	Discrete Time Model in Finance	TuTh, 2:30-4pm	CBB 122	E. Kao
Math 639727332	Massive Data Analysis for Large Sets of Interacting Time Series	TuTh, 11:30am-1pm	AH 301	R. Azencott
Math 639727331	Design of Experiments	MW, 4-5:30pm	SEC 206	W. Fu
Math 639728751	Multilevel/Multiscale Methods	MWF, Noon-1pm	C 113	M. Olshanskii
Math 639727333	Stochastic Models in Biology	TuTh, 2:30-4pm	AH 301	K. Josic
Math 639729550	Scientific Computing with Python	TuTh, 2:30-4pm	M 105	I. Timofeyev
Math 732027327	Functional Analysis	TuTh, 1-2:30pm	AH 301	B. Bodmann
Math 737427329	Finite Element Methods	MW, 1-2:30pm	MH 129	R. Hoppe
Math 739727330	Levy Processes for Pricing Financial Derivatives	TuTh, 10-11:30am	AH 16	E. Kao

SENIOR UNDERGRADUATE COURSES

Prerequisites: MATH 3339 and BIOL 3306 or consent of instructor.

Text(s):

Description:

Prerequisites:

Text(s):

Description: Prerequisites:

Biostatistics: A Methodology for the Health Sciences | Edition: 2, Gerald van Belle, Lloyd D. Fisher, Patrick J. Heagerty, 9780471031857

Statistics for biological and biomedical data, exploratory methods, generalized linear models, analysis of variance, cross-sectional studies, and nonparametric methods. Students may not receive credit for both MATH 4310 and BIOL 4310.
<< back to top >>

Math 4320 - Intro to Stochastic Processes
Math 3338
An Introduction to Stochastic Modeling" by Mark Pinsky, Samuel Karlin. Academic Press, Fourth Edition.
ISBN-10: 9780123814166
ISBN-13: 978-0123814166

We study the theory and applications of stochastic processes. Topics include discretetime and continuous-time Markov chains, Poisson process, branching process, Brownian motion. Considerable emphasis will be given to applications and examples.
K. Davidson and A. P. Donsig. Real Analysis and Applications: Theory in
Text(s): \quad Practice (Undergraduate Texts in Mathematics) 2010th Edition, SpringerISBN-13:

This first course in the sequence Math 4331-4332 provides a solid introduction to deeper properties of the real numbers, continuous functions, differentiability and integration needed for advanced study in mathematics, science and engineering. It is assumed that the student is familiar with the material of Math 3333, including an introduction to the

Math 4364 - Introduction to Numerical Analysis in Scientific Computing

MATH 2331, In depth knowledge of Math 3331 (Differential Equations) or Math 3321 (Engineering Mathematics)
*Ability to do computer assignments in FORTRAN, C, Matlab, Pascal, Mathematica or Maple.

Numerical Analysis (9th edition), by R.L. Burden and J.D. Faires, Brooks-Cole Publishers, 9780538733519

Description:

Prerequisites:
Text(s):

Description:

Prerequisites:
Text(s):

Description:

Prerequisites:
Text(s):

Description:

This is an one semester course which introduces core areas of numerical analysis and scientific computing along with basic themes such as solving nonlinear equations, interpolation and splines fitting, curve fitting, numerical differentiation and integration, initial value problems of ordinary differential equations, direct methods for solving linear systems of equations, and finite-difference approximation to a two-points boundary value problem. This is an introductory course and will be a mix of mathematics and computing.
<< back to top >>

Math 4366 - Numerical Linear Algebra
MATH 2331 , or equivalent, and six additional hours of 3000-4000 level Mathematics.
TBD

Conditioning and stability of linear systems, matrix factorizations, direct and iterative methods for solving linear systesm, computing eigenvalues and eigenvectors, introduction to linear and nonlinear optimization

<< back to top >>

Math 4377 (20824) - Advanced Linear Algebra I
Math 2331 and minimum 3 hours of 3000 level mathematics. Linear Algebra, Fourth Edition, by S.H. Friedberg, A.J Insel, L.E. Spence, Prentice Hall, ISBN 0-13-008451-4
The course covers the following topics: vector spaces, subspaces, linear combinations,systems of linear equations, linear dependence and linear independence, bases and dimension, linear transformations, null spaces, ranges, matrix rank, matrix inverse and invertibility, determinants and their properties, eigenvalues and eigenvectors, diagonalizability.
<< back to top >>

Math 4377 - Advanced Linear Algebra I
MATH 2331 and a minimum of three semester hours of 3000-level mathematics. Matrix Analysis and Applied Linear Algebra by Carl D. Meyer, 9780898714548 Linear systems of equations, matrices, determinants, vector spaces and linear transformations, eigenvalues and eigenvectors, spectral theory, matrix inequalities, linear mappings, Perron-Frobenius theory, applications including ranking algorithms and kinematics.
<< back to top >>
<< back to top>>
Math 4388 - History of Mathematics
Prerequisites: Math 3333 Intermediate Analysis, or content of instructor.
Text(s): No textbook is required.

This course is designed to provide a college-level experience in history of mathematics. Students will understand some critical historical mathematics events, such as creation of classical Greek mathematics, and development of calculus; recognize notable mathematicians and the impact of their discoveries, such as Fermat, Descartes, Newton and Leibniz, Euler and Gauss; understand the development of certain mathematical topics, such as Pythagoras theorem, the real number theory and calculus.

Aims of the course: To help students
to understand the history of mathematics;
to attain an orientation in the history and philosophy of mathematics;
to gain an appreciation for our ancestor's effort and great contribution;
to gain an appreciation for the current state of mathematics;
to obtain inspiration for mathematical education, and to obtain inspiration for further development of mathematics.

Description:

Prerequisites:
Text(s):
Description:
On-line course is taught through Blackboard Learn, visit http://www.uh.edu/webct/ for information on obtaining ID and password.

The course will be based on my notes.

Homework and Essays assignement are posted in Blackboard Learn. There are four submissions for homework and essays and each of them covers 10 lecture notes. The dates of submission will be announced.

All homework and essays, handwriting or typed, should be turned into PDF files and be submitted through Blackboard Learn. Late homework is not acceptable.

There is one final exam in multiple choice.
Grading: 35% homework, 45% projects, 20% Final exam.

> << back to top >>

Math 4389 - Survey of Undergraduate Mathematics MATH 3330, MATH 3331, MATH 3333, and three hours of 4000-level Mathematics. Instructor will use her own notes A review of some of the most important topics in the undergraduate mathematics curriculum.

ONLINE GRADUATE COURSES

MATH 5331 - Linear Algebra with Applications

Linear Algebra Using MATLAB, Selected material from the text Linear Algebra and

Software: Scientific Note Book (SNB) 5.5 (available through MacKichan Software, http://www.mackichan.com/)

Syllabus: Chapter 1 (1.1, 1.3, 1.4), Chapter 2 (2.1-2.5), Chapter 3 (3.1-3.8), Chapter 4 (4.14.4), Chapter 5 (5.1-5.2, 5.4-5-6), Chapter 6 (6.1-6.4), Chapter 7 (7.1-7.4), Chapter 8 (8.1)

Project: Applications of linear algebra to demographics. To be completed by the end of the semester as part of the final.

Course Description: Solving Linear Systems of Equations, Linear Maps and Matrix
Algebra, Determinants and Eigenvalues, Vector Spaces, Linear Maps, Orthogonality, Symmetric Matrices, Spectral Theorem

Students will also learn how to use the computer algebra portion of SNB for completing the project.

Homework: Weekly assignments to be emailed as SNB file.
There will be two tests and a Final.
Grading: Tests count for $90 \%(25+25+40)$, HW 10%

MATH 5333-Analysis

Prerequisites:
Text(s):
Description:

Prerequisites:
Text(s):

Description:

Instructor's lecture notes.

This course is an introduction to complex analysis. It will cover the theory of holomorphic functions, Cauchy theorem and Cauchy integral formula, residue theorem, harmonic and subharmonic functions, and other topics.

On-line course is taught through Blackboard Learn, visit http://www.uh.edu/webct/ for information on obtaining ID and password.

The course will be based on my notes.

In each week, some lecture notes will be posted in Blackboard Learn, including homework assignment.

Homework will be turned in by the required date through Blackboard Learn. It must be in pdf file. There are two exams. Homework and test problems are mostly computational in nature.
<< back to top >>
<< back to top >>
MATH 5397 (27319) - Numerical Computing with Python Graduate Standing, and basic familiarity with calculus, matrices, vectors and introductory statistics.
"Numerical Methods in Engineering with Python 3", by Jaan Kiusalaas. ISBN: 9781107033856. Cambridge University Press; 3rd edition.

Description:
Course Overview: This course is an introduction to scientific computing with Python, which will include an introduction to the Python programming language, approximate differentiation and integration, roots of equations, solutions to systems of linear equations, least squares solutions and multiple regression, solutions to nonlinear systems of equations, optimization, and solutions to discrete dynamical systems and differential equations. All computations will be done in Python, and consequently, the course will also include instruction associated with programming in Python. Students are not expected have experience with the Python programming language.

Discussion Forum Activity: All students are expected to discuss the course material via the discussion forum, linked from the course homepage. 10% of the final grade will be based upon discussion board activity, and questions are just as important as answers (correct or incorrect). All discussion forum questions and comments will be read within 24 hours, and responses will be given if your classmates have not already given good feedback.

Additional Communication: Students will receive emails from the instructor during most weekdays of the course, reminding students of current material, upcoming topics, reading assignments, available help materials, and coming due dates. All of these emails will also be posted in a special thread within the discussion forum. Email can also be used to communicate with the instructor, although students are encouraged to use the discussion forum when the questions are not of a student specific nature.

Homework: Written homework will be given several times during the semester, with the due dates noted on the course calendar. Students will upload their work to the course website. Instructions will be given.

Exams: A midterm and final exam will be given. The dates and times of the exams will be announced later in the semester. Remote proctoring will be arranged for students who do not live in the Houston area.

Online Meetings: The class will have an OPTIONAL online live meeting on Tuesday evenings from $8-10: 00 \mathrm{pm}$. Notes and a video of the sessions will be posted for students who cannot attend.

Additional Information: A link to course materials will appear by August 15, 2016 at http://www.math.uh.edu/~jmorgan .

GRADUATE COURSES

MATH 6302 - Modern Algebra I

Prerequisites:

Text(s):

Description:

Graduate standing or consent of instructor
Course notes will be provided. There is no required text, but if you wish to have something to supplement the notes, I recommend the book Abstract Algebra by David S. Dummit and Richard M. Foote. This book is encyclopedic with good examples and it is one of the few books that includes material for all of the four main topics we will cover: groups, rings, field, and modules. While some students find it difficult to learn solely from this book, it does provide a nice resource to be used in parallel with class notes or other sources.
We will cover basic concepts from the theories of groups, rings, fields, and modules. These topics form a basic foundation in Modern Algebra that every working mathematician should know. The Math 6302--6303 sequence also prepares students for the department's Algebra Preliminary Exam.

Prerequisites:	MATH 2331 and minimum of 3 semester hours of 3000 level mathematics.
Text(s):	Linear Algebra, Fourth Edition, by S.H. Friedberg, A.J Insel, L.E. Spence,Prentice Hall, ISBN 0-13-008451-4
The course covers the following topics: vector spaces, subspaces, linear	
combinations,systems of linear equations, linear dependence and linear independence,	
Description:	bases and dimension,linear transformations, null spaces, ranges, matrix rank, matrix inverse and invertibility,determinants and their properties, eigenvalues and eigenvectors, diagonalizability.

MATH 6308 (20827)- Advanced Linear Algebra I

Prerequisites:	TBA
Text(s):	TBA
Description:	TBA

TBD \ll back to top >>

MATH 6312- Introduction to Real Analysis
Graduate standing. MATH 3334 or consent of instructor. In depth knowledge of Math 3325 and Math 3333 is required.
K. Davidson and A. P. Donsig, Real Analysis and Applications: Theory in Practice (Undergraduate Texts in Mathematics) 2010th Edition, SpringerSBN-13: 9780387980973 ISBN-10: 9780387980973

This first course in the sequence Math 4331-4332 provides a solid introduction to deeper properties of the real numbers, continuous functions, differentiability and integration needed for advanced study in mathematics, science and engineering. It is assumed that the student is familiar with the material of Math 3333, including an introduction to the real numbers, basic properties of continuous and differentiable functions on the real line, and an ability to do epsilon-delta proofs.

Topics: Open and closed sets, compact and connected sets, convergence of sequences, Cauchy sequences and completeness, properties of continuous functions, fixed points and the contraction mapping principle, differentiation and integration.
<< back to top >>
MATH 6320 - Theory Functions of a Real Variable
Prerequisites:
Text(s):

Description:
Graduate standing. Math 4332 (Introduction to real analysis) or consent of instructor Real Analysis: Modern Techniques and Their Applications | Edition: 2, by: Gerald B.
Folland, G. B. Folland. ISBN: 9780471317166
Math 6320 introduces students to modern real analysis. The core of the course will cover measures, Lebesgue integration, and $L^{\wedge} p$ spaces. We will study elements of functional analysis, Fourier analysis, ergodic theory, and probability theory.
<< back to top >>
MATH 6324 - Differential Equations
Prerequisites:
Graduate standing. MATH 4331

Required: Instructor's lecture notes

Recommended Texts:

- Differential Equations, Dynamical Systems and Linear Algebra by M. Hirsch and S. Smale (available at Amazon or in the library)
- Ordinary Differential Equations by V. I. Arnold, M.I.T press, 1998 (paperback)
- Geometrical Methods in the Theory of Ordinary Differential Equations by V. I. Arnold, Springer Verlag, 2nd Edition 1988.

This course is an introduction to differential equations. We cover linear theory: existence and uniqueness for autonomous and non-autonomous equations; stability analysis; stable and unstable manifolds and Floquet theory. We will also cover topics such as quasiperiodic motion; normal form theory; perturbation theory and classical mechanics.

Assessment: There will be one midterm (worth 20 points), a final exam (30 points) as well as 2 to 4 take-home problem sheets (to make up 50 points in total).
<< back to top >>
MATH 6342 - Topology
Graduate standing. MATH 4331 and MATH 4337 or consent of instructor.
(Recommended) Topology, A First Course, J. R. Munkres, Second Edition, Prentice-Hall Publishers.
V. Runde A taste of topology, Springer Universitext (paperback, inexpensive).

Topology is the perfect course to take as a first year graduatestudent, since it does not contain too much material, or material that is too sophisticated(the typed notes for the course are about 47 pages). It is a central and fundamental course and one which graduate students usually enjoy very much!

Thetopic is basically point-set topology, we will discuss a little algebraic topology at the end. We begin by discussing a little set theory, the basic definitions of topology and basis, and go on to discuss separation properties, compactness, connectedness, nets, continuity, local compactness, Urysohn's lemma, local compactness, Tietze's theorem, the characterization of separable metric spaces, paracompactness, partitions of unity, and basic constructions such as subspaces, quotients, and products and the Tychonoff theorem. At the end we will discuss a little algebraic topology, like simple connectedness and the fundamental group.

Description:

Prerequisites:

Text(s):

Description:
MATH 6352 - Complex Analysis and Geometry
Graduate Standing. Math 6322-6323, or equivalent, or consent of instructor

Positivity in Algebraic Geometry I, by Lazarsfeld. ISBN: 9783540225331 (not required)
Principles of Algebraic Geometry, by Griffiths-Harris. ISBN: 9780471050599 (not required)
This is the first semester of a two semester introductory course in complex algebraic geometry. Topics to be discussed are: basics of complex analysis, complex manifolds, cohomology, line bundles and divisors, rational and birational maps, compact complex surfaces, intersection theory, Riemann-Roch theorem.

MATH 6360-Applicable Analysis

Text(s):

Description:

Prerequisites:

Text(s):

Description:

Prerequisites:
Text(s):

Description:
A.W. Naylor and G.R. Sell, Linear Operator Theory in Engineering and Science, Springer. ISBN: 9780387950013

This course treats topics related to the solvability of various types of equations, and also of optimization and variational problems. The first half of the semester will concentrate on introductory material about norms, Banach and Hilbert spaces, etc. This will be used to obtain conditions for the solvability of linear equations, including the Fredholm alternative. The main focus will be on the theory for equations that typically arise in applications. In the second half of the course the contraction mapping theorem and its applications will be discussed. Also, topics to be covered may include finite dimensional implicit and inverse function theorems, and existence of solutions of initial value problems for ordinary differential equations and integral equations

MATH 6366-Optimization Theory
Graduate standing or consent of the instructor. Students are expected to have a good grounding in basic real analysis and linear algebra.

Introduction to Nonlinear Optimization Theory, Algorithms, and Applications with MATLAB; by Amir Beck, SIAM. ISBN: 9781611973648

The focus is on key topics in optimization that are connected through the themes of convexity, Lagrange multipliers, and duality. The aim is to develop a analytical treatment of finite dimensional constrained optimization, duality, and saddle point theory, using a few of unifying principles that can be easily visualized and readily understood. The course is divided into three parts that deal with convex analysis, optimality conditions and duality, computational techniques. In Part I, the mathematical theory of convex sets and functions is developed, which allows an intuitive, geometrical approach to the subject of duality and saddle point theory. This theory is developed in detail in Part II and in parallel with other convex optimization topics. In Part III, a comprehensive and up-to-date description of the most effective algorithms is given along with convergence analysis.
< back to top >>
MATH 6370 - Numerical Analysis
Graduate standing in mathematics, Calculus, Linear Algebra, consent of instructor. Numerical Mathematics (Texts in Applied Mathematics), 2nd Ed., V.37, Springer, 2010. By A. Quarteroni, R. Sacco, F. Saleri. ISBN: 9783642071010

The course introduces to the methods of scientific computing and their application in analysis, linear algebra, approximation theory, optimization and differential equations. The purpose of the course to provide mathematical foundations of numerical methods, analyse their basic properties (stability, accuracy, computational complexity) and discuss performance of particular algorithms. This first part of the two-semester course spans over the following topics: (i) Principles of Numerical Mathematics (Numerical wellposedness, condition number of a problem, numerical stability, complexity); (ii) Direct methods for solving linear algebraic systems; (iii) Iterative methods for solving linear algebraic systems; (iv) numerical methods for solving eigenvalue problems; (v) nonlinear equations and systems, optimization.

Graduate standing. MATH 3334, MATH 3338 and MATH 4378, or consent of instructor

Recommended Texts :

- A First Look at Rigorous Probability Theory by Jeffrey Rosenthal, 2000..
- An Intermediate Course in Probability Theory by Allan Gut, Springer 2009 (any edition)

Review of Undergraduate Probability:

- A First Course in Probability, 6th Edit. by Sheldon Ross, 2002, Prentice Hall

Complementary Texts for further reading:

- Probability: theory and Examples, 3rd Edit., Richard Durrett, Duxbury Press
- An Introduction to Probability Theory and Its Applications, Vol 1, by William Feller
- Probability by Leo Breiman, 1968, Addison-Wesley

General Background (A).

(1) Combinatorial analysis and axioms of probability
(2) Elementary random variables theory: expectation, variance, moments, distribution function, probability density functions, impact of change of variable on density functions
(3) Major discrete probability distributions: Bernoulli, Binomial, Poisson, Geometric Major continuous probability distributions: Uniform, Normal, Exponential
(4) Basic Modelling Applications
(5) Conditional probability: Bayes formula, Independence, Conditional Expectation, Conditional density function, Conditional Probability distribution, Independent identically distributed random variables
(6) Joint distributions, joint density functions, marginal distributions, marginal densities, covariances and correlation coefficients
(7) Moment generating functions, Characteristic functions,

Measure theory (B).

(1) Elementary measure theory: Boolean algebras, probability spaces, continuity of probabilities, Borel-Cantelli lemma, Chebychevs inequality,
(2) Convergence of random variables: Almost sure convergence, Convergence in distribution, Law of Large Numbers, Central Limit theorem

Markov chains and random walks (C).

Markov chain theory for finite or countable state spaces
(1) Markov property and Transition matrix, Irreducibility
(2) First hitting times, Transience, Recurrence ,
(3) Stationary distributions : existence theorems and computation
(4) Random walks on Z and Z2 as Markov chains; Gambler's ruin problem

MATH 6384 - Discrete Time Model in Finance Graduate standing. MATH 6382 or consent of instructor.

Introduction to Mathematical Finance: Discrete-time Models, by Stanley Pliska, Blackwell, 1997.

Description:

Prerequisites:

Text(s):

Description:

The course is an introduction to discrete-time models in finance. We start with singleperiod securities markets and discuss arbitrage, risk-neutral probabilities, complete and incomplete markets. We survey consumption investment problems, mean-variance portfolio analysis, and equilibrium models. These ideas are then explored in multiperiod settings. Valuation of options, futures, and other derivatives on equities, currencies, commodities, and fixed-income securities will be covered under discrete-time paradigms.

MATH 6397 (28751) - Multilevel/Multiscale Methods Graduate standing. The course complements standard numerical analysis (Math 4364),Partial Differential Equations (Math 4335), Advanced LinearAlgebra I \& II (Math 4377-4378). The latter two courses are desirable, but not pre-requested though, since elementary introduction to necessary concepts will be given

1) Y.Efendiev, Th. Y. Hou, Multiscale finite element methods, Springer, 2009
2) M.A.Olshanskii, Lecture notes on multigrid methods. (Available free online).

The course surveys and studies the main concepts and recent advances in multiscale finite element methods (FEM) and multilevel algebraic solvers. A broad range of scientific and engineering problems involve multiple scales. Large disparities in the modeled scales appear in virtually all areas of modern sciences engineering, for example, composite materials, porous media, turbulent transport and so on. The direct numerical solution of multiple scale problems is difficult even with the advent of supercomputers. Multiscale FEM are designed to capture the mutiscale structure of the solution. The notion of different scales is also of key importance for multilevel/multigrid methods to solve large systems of algebraic equationsarising in many applications. Pioneered in the 70s multigrid soon become a crucial ingredient in engineering software and is known to be among a few methods to provide an optimal complexity in terms of arithmetic operations per unknown. Nowadays, every researcher working with the numerical solution of partial differential equations should at least be familiar with this powerful approach. This course introduces to multigrid methods and their applications in computational physics. Applications will be considered to basic PDEs as well as to various fluids models, and Maxwell equations.

MATH 6397 (27332) - Massive Data Analysis for Large Sets of Interacting Time Series Graduate Standing.

- Linear Algebra: matrices, eigenvectors and eigenvalues, diagonalization, determinants, quadratic forms associated to symetric matrices

Prerequisites:

- Basic Probability and Statistics: random variables, independence, probability distributions, CDF's and densities, histograms, quantiles, correlations and covariances
- Hilbert Spaces: background knowledge and basic examples

No single textbook. Reading assignments will be a small set of scientific papers. Some

The Elements of Statistical Learning, Data Mining: Freedman, Hastie, Tibshirani

Summary: Automatic learning has been widely extended to the analysis of high dimensional data sets and in particular to smart data mining of massive data sets of time series. The course will focus first on applications of machine learning to automated clustering, modeling, and forecasting of time series in multiple application domains where data are naturally indexed by time : economic and financial data, multi-sensors recordings, brain activity recordings, climate data recordings, etc.

We will present and study key techniques such as entropy based distances, kernel based non linear clustering, spectral compression of networks dynamics, kernel based nonlinear forecasting, reconstruction of networks connctivity. Emphasis will be on understanding importants concepts and their mathematical formalization, with a strong focus on software implementation of algorithms and intensive testing on actual or simulated data sets.

Homework and exams: Homework assignments will mostly involve computational implementation on several applied projects. Students will have to use either Matlab or R or equivalent scientific softwares. Projects Reports will have to be typed (using LaTeX or Word scientific). Two midterm exams will be held in class (1h30 without notes or books), and will require only answering conceptual or theoretical questions, with no mathematical proof requested. Final exam will involve in depth reading of one scientific paper and preparation of a set of slides. Actual presentation of the slides will not be requested

Final grade $=20 \%$ final $+10 \%$ midterm1 $+10 \%$ midterm $2+60 \%$ homeworks

MATH 6397 (27331) - Design of Experiments
Graduate Standing. Consent of instructor. Two years of Calculus, Math 6308 Advanced

Description:

Text(s):

Description:

Randomness and variability which are fundamental features of nearly all biological systems. In this course we will use the theory of probability and stochastic processes to develop models of biological systems. We will discuss models of chemical reactions, gene regulatory networks, epidemics, and neuronal networks. Students taking the course should be comfortable with undergraduate probability, multivariate calculus, differential equations and linear algebra. Topics to be covered include: a review of probability, including numerical techniques for generating random samples, Markov processes with discrete and continuous space variables, diffusion processes, Wiener and Ornstein-Uhlenbeck processes, point processes, Gillespie's algorithm and other algorithms for simulating stochastic processes and their application in biology, statistical analysis of time series, power spectra of random processes. A portion of the course will be devoted to numerical simulations of stochastic systems using MATLAB.

This class is designed for graduate students who would like to learn python programming with an emphasis on scientific computing. First, we will discuss standard python constructions. Then, we will discuss data structures which are relevant for scientific computing. We will also discuss various computing algorithms (e.g. ODE integration and computation of statistical quantities, optimization, data processing and machine learning) and implementation in python. Background mathematical material on computational algorithms will be given in class. We will also discuss some computer science algorithms (sorting, graph search, etc.) and implementations.

<< back to top >>
 << back to top >>

MATH 7320 - Functional Analysis
Prerequisites:
Text(s):

Description:
rerequisites:

Topics covered in this first part of the course sequence include: Topological vector spaces (linear mappings,metrizability, bounded operators and continuity, seminorms and local convexity, quotient spaces); Completeness(Baire category and the Banach-Steinhaus theorem, an application to Fourier series, open mapping theorem,closed graph theorem);Convexity (HahnBanach theorem, weak topology and separation theorems,compactness and duality, subspaces and quotients); Spectral theory (Banach algebras and their representation,commutativity, resolutions of the identity, spectral theorem, eigenvalues of normal operators, positivity); Distributions (linear functionals on topological vector spaces,working with distributions localization theorems).

The grade will be based on notes prepared by the students.

<< back to top >>

<< back to top >>
MATH 7374 - Finite Element Methods
Graduate Standing. Students must have a good background in Calculus, Linear Algebra, Numerical Analysis
D. Braess; Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics. 3rd Edition.Cambridge Univ. Press, Cambridge, 2007.
Text(s):

Description:

Prerequisites:

Text(s):

Description:
C. Brenner and L. Ridgway Scott; The Mathematical Theory of Finite Element Methods. 3rd Edition. Springer, New York, 2008

Finite Element Methods are widely used discreti-zation techniques for the numerical solution ofPDEs based on appropriate variational formu-lations. We begin with basic principles for theconstruction of Conforming Finite Elements andFinite Element Spaces with respect to triangulations of the computational domain. Then, westudy in detail a priori estimates for the globaldiscretization error in various norms of the un-derlying function space. Nonconforming and Mi-xed Finite Element Methods will be addressed aswell. A further important issue is adaptive gridrefinement on the basis of efficient and reliablea posteriori error estimators for the global discretization error.
<< back to top >>
<< back to top >>
MATH 7397 - Levy Processes for Pricing Financial Derivatives
Graduate Standing and Math 6385

1. Financial Modeling with Jump Processes, Second Edidition, By Rama Cont and Peter Tankov, Chapman and Hall, 2016.
2. Levy Processes in Finance: Pricing Financial Derivatives, by Wim Schoutens, Wiley, 2003.

This course is about using Levy processes in modelling financial time series and valuation of contingenct claims. We start with a revew of diffusion processes, jump processes, point processes, and random measures. we cover Ito calculus for semimartingales and Girsanov measure transformation. We then expore the building Levy processes, parameter estimation and valuation of financial derivatives. We also address issues relating to pricing and hedging in incomplete markets.

